ued赫塔菲官方 1

据外媒报道,目前一些3D打印生物组织的方法涉及使用微型支架,然而一种新开发的技术通过使用水凝胶代替了这种方法的一些缺点。通常,身体组织的“生物打印”涉及将细胞接种到具有支架状微结构的材料中。

匹兹堡 - 来自卡内基梅隆大学的一组研究人员发表了一篇科学论文,其中详细介绍了一项新技术,允许任何人使用人体内主要结构蛋白胶原蛋白对组织支架进行3D生物打印。这种首创的方法使组织工程领域更接近于能够3D打印全尺寸的成人人类心脏。

多年来,工程化组织和器官在实验室中取得了不同程度的成功。他们中的许多人已经使用脚手架方法,其中将细胞接种到可生物降解的支撑结构上,所述支撑结构提供所需器官或组织的基础结构。

ued赫塔菲官方 2

ued赫塔菲官方 3

但支架可能存在问题 - 最终,它们应该降解并消失,但是分解与器官成熟相符的时机是棘手的,有时降解副产物可能是有毒的。支架还可以干扰细胞

该材料为细胞嵌入其中提供了三维的“家”,然后再生。最终,当宿主材料生物降解时,细胞接管,直到没有剩余物,但生物组织以所需的物理形式存在。

这种被称为自由形式可逆嵌入悬浮水凝胶(FRESH)的技术使研究人员克服了与现有3D生物打印方法相关的许多挑战,并使用柔软和生物材料实现了前所未有的分辨率和保真度。

  • 细胞连接的发展,这对于功能组织的形成是重要的。

然而,根据伊利诺伊大学芝加哥分校科学家的说法,这个过程确实存在一些缺点。一方面,让时机恰到好处可能很棘手。此外,材料的生物降解会产生有毒的副产品,并且支架会干扰细胞与细胞的“通讯”

人体中的每个器官,例如心脏,是由称为细胞外基质(ECM)的生物支架保持在一起的特化细胞构建的。这种ECM蛋白质网络提供了细胞执行其正常功能所需的结构和生化信号。然而,到目前为止,还不可能使用传统的生物制造方法重建这种复杂的ECM架构。

现在,伊利诺伊大学芝加哥分校的Richard和Loan Hill生物工程和骨科教授Eben Alsberg领导的一个研究小组已经开发出一种方法,可以使用仅由茎组成的墨水,无需支架的3D生物组织打印细胞。他们在期刊Materials Horizo​​ns上报告了他们的结果。

  • 后者对于组织的正确形成至关重要。

“我们所展示的是,我们可以将细胞和胶原蛋白的碎片打印成真正起作用的部分,如心脏瓣膜或小心脏搏动,”生物医学工程(BME)教授Adam Feinberg说。卡内基梅隆大学的材料科学与工程专业,他的实验室完成了这项工作。“通过使用人类心脏的MRI数据,我们能够准确地再现患者特异性解剖结构和3D生物打印胶原蛋白和人类心脏细胞。”

Alsberg说:我们的细胞专用印刷平台允许使用临时水凝胶珠浴进行细胞的3D打印,而无需经典的支架支撑。

作为替代方案,由Eben Alsberg教授领导的团队开发了一种系统,该系统使用由微珠组成的水凝胶块。将打印喷嘴降低到凝胶中,在那里它垂直和水平来回移动-沉积由干细胞组成的“生物链” 。微珠将“生物链”保持在原位,保持在三维空间中沉积的位置。

美国有超过4000名患者正在等待心脏移植手术,而全球数百万患者需要心脏但不符合等候名单的资格。对更换器官的需求是巨大的,并且需要新的方法来设计能够修复,补充或替换长期器官功能的人造器官。Feinberg是Carnegie Mellon的生物工程机关倡议的成员,正在努力通过新一代生物工程器官来解决这些挑战,这些器官能够更紧密地复制天然器官结构。

微米级水凝胶珠粒允许3D打印机的喷嘴移动通过它并沉积细胞,对喷嘴移动或细胞喷射的阻力最小。凝胶珠在印刷时支撑细胞并将它们保持在适当位置并保持其形状。

然后将整个水凝胶珠粒基质暴露于紫外光下,使珠粒彼此交联,从而保持形状。在接下来的几周内,细胞继续繁殖并相互自由“交流”。随后技术人员添加一种营养浴溶液,使其很容易流过交联珠子到达组织。

“胶原蛋白是一种非常理想的3D打印生物材料,因为它可以弥补身体中的每一种组织,”BME博士的Andrew

一旦将细胞印刷到水凝胶珠粒基质中,将其暴露于UV光,其将珠粒交联在一起,实际上将它们冷冻就位。这使得印刷的细胞彼此连接,成熟并在稳定的结构内生长。沐浴细胞的培养基很容易通过交联的凝胶珠流动,并可根据需要更换,以提供新鲜营养,并处理细胞产生的废物。可以通过温和搅拌除去水凝胶珠粒,或控制它们的降解,留下完整的组织。

一旦该生物组织达到成熟,可以通过轻轻搅动基质或通过使它们无害地生物降解来除去珠子

可以通过化学方法确定降解速率。遗留下来的只是完全形成的器官或其他组织。到目前为止,研究人员已经使用该技术生产了啮齿动物大小的股骨和耳软骨。

“我们已经证明,使用这种策略可以组织和组装细胞聚集体,形成更大的功能组织,这可能对组织工程或再生医学,药物筛选和研究发育生物学的模型很有价值,”Alsberg说道。

有关这项研究的论文最近发表在《Materials Horizons》杂志上。

Hudson解释道。Feinberg实验室的学生和论文的共同第一作者。“然而,3D打印如此困难的原因在于它最初是流动的

所以如果你试图在空中打印它,它只会在你的构建平台上形成一个水坑。所以我们开发了一种技术来防止它变形了。“

在Feinberg实验室开发的FRESH 3D生物打印方法允许胶原蛋白逐层沉积在凝胶支持浴中,使胶原蛋白在从支撑浴中取出之前有机会固化。使用FRESH,在打印完成后,通过将凝胶从室温加热到体温,可以很容易地将支持凝胶熔化掉。通过这种方式,研究人员可以去除支撑凝胶,而不会损坏由胶原蛋白或细胞构成的印刷结构。

这种方法对于3D生物打印领域来说是非常令人兴奋的,因为它允许胶原支架在大规模的人体器官上打印。并且它不仅限于胶原蛋白,因为包括纤维蛋白,藻酸盐和透明质酸在内的各种其他软凝胶可以使用FRESH技术进行3D生物打印,从而提供强大且适应性强的组织工程平台。重要的是,研究人员还开发了开源设计,几乎任何人,从医学实验室到高中科学课程,都可以建立并获得低成本,高性能的3D生物打印机。

展望未来,FRESH在再生医学的许多方面都有应用,从伤口修复到器官生物工程,但它只是一个不断发展的生物制造领域的一部分。“真正我们所谈论的是技术的融合,”费因伯格说。“不仅仅是我的实验室在生物打印方面所做的工作,还包括干细胞科学,机器学习和计算机模拟领域的其他实验室和小公司,以及新的3D生物打印硬件和软件。”

“重要的是要了解有许多年的研究还有待完成,”费恩伯格补充说,“但是我们仍然应该感到非常兴奋,我们正朝着工程功能性人体组织和器官的方向取得真正的进展,而这篇论文是一步到位沿着那条路走。“

水凝胶珠浴具有独特的性质,可以在复杂的结构中印刷仅细胞的生物聚合物,并随后暂时稳定这些仅有细胞的结构,从而形成细胞

  • 细胞连接,Alsberg说。使用化学,我们可以调节珠子何时消失。

Alsberg团队使用的细胞是干细胞 - 那些可以分化成多种其他细胞类型的干细胞。他们使用干细胞在水凝胶珠浴中3D打印软骨耳和啮齿动物大小的股骨。他们印刷的细胞能够通过特殊蛋白质形成稳定的细胞

  • 细胞连接。

第一次,仅细胞构建体可以复杂的形式印刷,由不同的细胞类型组成,没有水凝胶载体或传统的支架,然后可以稳定一天到几周。我们已经证明了可以使用该策略组织和组装细胞聚集体以形成更大的功能组织,这可能对组织工程或再生医学,药物筛选和研究发育生物学的模型有价值,Alsberg说。